\(\int \frac {\cos ^4(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx\) [349]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 168 \[ \int \frac {\cos ^4(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=-\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 b f}-\frac {2 (a+2 b) E\left (e+f x\left |-\frac {b}{a}\right .\right ) \sqrt {a+b \sin ^2(e+f x)}}{3 b^2 f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {(a+b) (2 a+3 b) \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right ) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{3 b^2 f \sqrt {a+b \sin ^2(e+f x)}} \]

[Out]

-1/3*cos(f*x+e)*sin(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/b/f-2/3*(a+2*b)*(cos(f*x+e)^2)^(1/2)/cos(f*x+e)*EllipticE(
sin(f*x+e),(-b/a)^(1/2))*(a+b*sin(f*x+e)^2)^(1/2)/b^2/f/(1+b*sin(f*x+e)^2/a)^(1/2)+1/3*(a+b)*(2*a+3*b)*(cos(f*
x+e)^2)^(1/2)/cos(f*x+e)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*(1+b*sin(f*x+e)^2/a)^(1/2)/b^2/f/(a+b*sin(f*x+e)^2
)^(1/2)

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.24, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3271, 427, 538, 437, 435, 432, 430} \[ \int \frac {\cos ^4(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\frac {(a+b) (2 a+3 b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{3 b^2 f \sqrt {a+b \sin ^2(e+f x)}}-\frac {2 (a+2 b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{3 b^2 f \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {\sin (e+f x) \cos (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 b f} \]

[In]

Int[Cos[e + f*x]^4/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-1/3*(Cos[e + f*x]*Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(b*f) - (2*(a + 2*b)*Sqrt[Cos[e + f*x]^2]*Elliptic
E[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(3*b^2*f*Sqrt[1 + (b*Sin[e + f*x]^2)/
a]) + ((a + b)*(2*a + 3*b)*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 +
(b*Sin[e + f*x]^2)/a])/(3*b^2*f*Sqrt[a + b*Sin[e + f*x]^2])

Rule 427

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[d*x*(a + b*x^n)^(p + 1)*((c
 + d*x^n)^(q - 1)/(b*(n*(p + q) + 1))), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 432

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 538

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c]))))))

Rule 3271

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[ff*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])), Subst[Int[(1 - ff^2*x^2)^((m - 1)/2
)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !IntegerQ
[p]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {\left (1-x^2\right )^{3/2}}{\sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f} \\ & = -\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 b f}+\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {a+3 b-2 (a+2 b) x^2}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 b f} \\ & = -\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 b f}-\frac {\left (2 (a+2 b) \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 b^2 f}+\frac {\left ((a+b) (2 a+3 b) \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 b^2 f} \\ & = -\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 b f}-\frac {\left (2 (a+2 b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {b x^2}{a}}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 b^2 f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {\left ((a+b) (2 a+3 b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{3 b^2 f \sqrt {a+b \sin ^2(e+f x)}} \\ & = -\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 b f}-\frac {2 (a+2 b) \sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 b^2 f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {(a+b) (2 a+3 b) \sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{3 b^2 f \sqrt {a+b \sin ^2(e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.18 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.01 \[ \int \frac {\cos ^4(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\frac {-4 \sqrt {2} a (a+2 b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )+2 \sqrt {2} \left (2 a^2+5 a b+3 b^2\right ) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )+b (-2 a-b+b \cos (2 (e+f x))) \sin (2 (e+f x))}{6 \sqrt {2} b^2 f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

[In]

Integrate[Cos[e + f*x]^4/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(-4*Sqrt[2]*a*(a + 2*b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] + 2*Sqrt[2]*(2*a^2 +
 5*a*b + 3*b^2)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)] + b*(-2*a - b + b*Cos[2*(e +
 f*x)])*Sin[2*(e + f*x)])/(6*Sqrt[2]*b^2*f*Sqrt[2*a + b - b*Cos[2*(e + f*x)]])

Maple [A] (verified)

Time = 2.43 (sec) , antiderivative size = 316, normalized size of antiderivative = 1.88

method result size
default \(\frac {b^{2} \left (\sin ^{5}\left (f x +e \right )\right )+2 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2}+5 a \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b +3 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b^{2}-2 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2}-4 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a b +a b \left (\sin ^{3}\left (f x +e \right )\right )-b^{2} \left (\sin ^{3}\left (f x +e \right )\right )-a b \sin \left (f x +e \right )}{3 b^{2} \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(316\)

[In]

int(cos(f*x+e)^4/(a+b*sin(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*(b^2*sin(f*x+e)^5+2*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))
*a^2+5*a*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b+3*(cos(f*x+e
)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b^2-2*(cos(f*x+e)^2)^(1/2)*((a+b*
sin(f*x+e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a^2-4*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^
(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a*b+a*b*sin(f*x+e)^3-b^2*sin(f*x+e)^3-a*b*sin(f*x+e))/b^2/cos(f*x+e
)/(a+b*sin(f*x+e)^2)^(1/2)/f

Fricas [F]

\[ \int \frac {\cos ^4(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int { \frac {\cos \left (f x + e\right )^{4}}{\sqrt {b \sin \left (f x + e\right )^{2} + a}} \,d x } \]

[In]

integrate(cos(f*x+e)^4/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-b*cos(f*x + e)^2 + a + b)*cos(f*x + e)^4/(b*cos(f*x + e)^2 - a - b), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^4(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\text {Timed out} \]

[In]

integrate(cos(f*x+e)**4/(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^4(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int { \frac {\cos \left (f x + e\right )^{4}}{\sqrt {b \sin \left (f x + e\right )^{2} + a}} \,d x } \]

[In]

integrate(cos(f*x+e)^4/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(f*x + e)^4/sqrt(b*sin(f*x + e)^2 + a), x)

Giac [F]

\[ \int \frac {\cos ^4(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int { \frac {\cos \left (f x + e\right )^{4}}{\sqrt {b \sin \left (f x + e\right )^{2} + a}} \,d x } \]

[In]

integrate(cos(f*x+e)^4/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^4(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^4}{\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a}} \,d x \]

[In]

int(cos(e + f*x)^4/(a + b*sin(e + f*x)^2)^(1/2),x)

[Out]

int(cos(e + f*x)^4/(a + b*sin(e + f*x)^2)^(1/2), x)